Developing 3-D shear wave models uisng a multi-objective joint inversion scheme
نویسندگان
چکیده
For this research, our main purpose is to obtain a better understanding of the Earths tectonic processes in the Texas region, which requires us to analyze the Earth structure. We expand on a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize a one-dimensional Earth’s structure of Texas with the use of multiple geophysical data sets. We employed a joint inversion scheme using multiple geophysical datasets for the sole purpose of obtaining a three-dimensional velocity structure of Texas in order to identify an ancient rift system within Texas. In particular, we use data from the USArray, which is part of the EarthScope experiment, a 15-year program to place a dense network of permanent and portable seismographs across the continental United States. Utilizing the USArray data has provided us with the ability to image the crust and upper mantle structure of Texas. We simultaneously inverted multiple datasets from USArray data, to help us to better obtain an estimate of the true Earth Structure model. We prove through numerical and experimental testing that our Multi-Objective Optimization (MOP) scheme performs inversion in a more accurate, robust, and flexible matter than traditional inversion approaches.
منابع مشابه
Joint inversion of ReMi dispersion curves and refraction travel times using particle swarm optimization algorithm
Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion strategy is proposed based on the particle swarm optimization (PSO) algorithm. The ...
متن کاملConstruction of Shear Wave Models by Applying Multi-Objective Optimization to Multiple Geophysical Data Sets
For this work, our main purpose is to obtain a better understanding of the Earth’s tectonic processes in the Texas region, which requires us to analyze the Earth structure. We expand on a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize a one-dimensional Earth’s structure of Texas with the use of multiple geophysical data sets. We employed a ...
متن کاملJoint Inversion of Receiver Functions and Surface-wave Dispersion
Teleseismic P-wave receiver functions and surface-wave dispersion measurements can be employed to simultaneously infer the shear-wave velocity distribution with depth in the lithosphere. Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages, so that the...
متن کاملThe non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography
S U M M A R Y Measurements of the splitting or birefringence of seismic shear waves constitute a powerful and popular technique for characterizing azimuthal anisotropy in the upper mantle. The increasing availability of data sets from dense broad-band seismic arrays has driven interest in the development of techniques for the tomographic inversion of shear wave splitting data and in comparing s...
متن کاملA reappraisal of regional surface wave tomography
S U M M A R Y A three-stage inversion scheme for surface wave tomography working with multimode phase dispersion as a function of frequency provides a means of combining a wide range of data in a common framework. The phase average approximation is applied directly to phase slowness and there is no need to invoke perturbation arguments for the interpretation of path-averaged velocity models der...
متن کامل